

MASSACHUSETTS CENTER FOR RENEWABLE ENERGY SCIENCE AND TECHNOLOGY

"Fuels for the Future"

A Mass-CREST Energy Research Group

Susan Leschine
University of Massachusetts Amherst

The Initiative

Mass-CREST Mission

To enhance the performance of renewable energy devices and systems by ten-fold within the next ten years

Energy Research Groups (ERGs)

- Photovoltaics (solar fuels)
- Fuel cells and batteries
- Fuels for the Future (cellulosic ethanol, bioalkanes, H₂)

Fuels for the Future - ERG

Mass-CREST takes a multi-pronged approach to solving the biomass-to-fuel conversion problem.

- Chemical approaches development of novel biomass conversion catalysts:
 - Zeolite catalysts
 - Oxide catalysts
 - Biological approaches

Fuels for the Future - ERG

Fuels for the Future - ERG

Mass-CREST takes a multi-pronged approach to solving the biomass-to-fuel conversion problem.

- Chemical approaches development of novel biomass conversion catalysts
 - Oxide catalysts
 - Zeolite catalysts
- Biological approaches
 - Combining research in plant and microbial biology to devise systems and processes for cellulosic ethanol production

MASSACHUSETTS CENTER FOR RE

Consolidated Bioprocessing of Biomass to Ethanol by *Clostridium phytofermentans*

 A technology for the production of cellulosic ethanol utilizing a novel bacterium with unique properties

The Technology

Consolidated Bioprocessing of Biomass

- single-step biomass-to-ethanol process
- simple, effective strategy to overcome the recalcitrance of cellulosic biomass
- novel bacterium Clostridium phytofermentans:

C-phy ---

The Technology

Consolidated Bioprocessing of Biomass

 Cellulase enzyme production, cellulose breakdown, and fermentation are consolidated in a single step in a bioreactor

Existing Technology

Current cellulosic ethanol processes requires enzymes \$\$\$

Our Technology

Consolidated Bioprocessing of Biomass

MASSACHUSETTS CENTER FOR RENEWABLE ENERGY SCIENCE AND TECHNOLOGY

How does our C-phy CBP technology compare?

Our process:

- single-step biomass-to-ethanol process
 - ✓ Reduced complexity
- process incorporates enzyme production
 - √ Separate enzyme production unnecessary

Impediments to commercializing existing technologies:

- √ Process complexity
- ✓ Enzymes are expensive!

Unique properties of C-phy make this technology possible

- simultaneously ferments multiple different components of biomass
- ferments unusually high concentrations of cellulose
- high ratio of ethanol to other products

Unique properties of C-phy make this technology possible

Cellulose **V**Ethanol

C-phy —> growing on cellulose

MASSACHUSETTS CENTER FOR RENEWABLE ENERGY SCIENCE AND TECHNOLOGY

"Fuels for the Future"

A Mass-CREST Energy Research Group

Thank you!

